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limited when v = 3 or 4. This occurs because the rate 
of decrease of U with increasing U is equal to or less 
than tha t  of A U, and it confirms the suitability of these 
indices. 
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The X - r a y  scat tering pa t te rns  of several cubic arrays  of points a r ranged on a body-centered  cubic 
lattice have been computed according to the Debye scattering formula, I = ~ ~ (sin rqs)/rijs 

i 1 
and plotted as a function of t = as, where a is the unit translation of the lattice. 

The dependence upon the scattering angle of X-ray 
intensity scattered from an assemblage of crystals in 
the Debye-Scherrer arrangement may  be described in 
terms of Bragg's Law; or alternatively in terms of the 
Debye scattering formula 

sin r~js 
l ( s )=2 ' i ' ~ f i f '  ~ " 

where s = (4~/2) sin ½0. When the discrete crystallites 
making up the assemblage are large (of the order of 
tens of thousands of unit  cells or more), these two 
relations give identical positions of maximum in- 
tensity. As the crystallites become smaller, the familiar 
line-broadening effect appears. In  addition to the 
actual broadening of the powder lines, this effect in- 
eludes also a loss of resolution between adjacent lines, 
coalescence of adjacent lines, and disappearance of 
both the weaker lines and the lines occurring at high 0. 
Numerous investigations into the relation between 
~m0unt 0f pe&k-br0adening ~nd size of crystnllite hnve 
been published. The companion questions: of minimum 
crystallite size for the appearance of a given (weak) 
line; of minimum crystallite size for the resolution of 
two or more adjacent lines; of the size below which 
the finer details of the pat tern  are absorbed into the 
background scattering; and of the preferential sup- 
pression of diffraction detail as the crystallites are 
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asymmetrically reduced in size or the preferential 
appearance of characteristic lines as the crystallites 
are enlarged in preferred directions: have been more 
neglected. 

Probably the conceptually most satisfactory answer 
to these questions is obtained by  actual calculation 
of the scattering patterns characteristic of crystalline 
assemblages of appropriate dimensions. I t  is then 
possible to inspect plots of the Debye scattering func- 
tion for a series of crystallite sizes and shapes, and to 
form a coherent and detailed mental  picture of the 
gradual transition from the diffuse and characterless 
haloes of the patterns from very t iny crystallites to the 
family of discrete lines characteristic of indefinitely 
large crystallites. The availability of high-speed com- 
puting machines makes the task of numerical evalua- 
tion of the Debye scattering function rather less 
formidable than it once was, even for relatively large 
crystallites. 

The present eommunlcatlon presents the results of 
such calculations for the case of body-centered cubic 
homoatomic crystallites, cubic in shape, and ranging 
from one unit cell (nine atoms) to a cube of 1000 unit  
cells (2331 atoms). Plots of this kind have already 
been published by Germer & White (1941) and by 
James (1948). The results of Germer & White cover 
the case of face-centered cubic assemblages. Their 
calculations were spaced at considerably larger inter- 
vals than in the present paper, however, with the 
result tha t  the background is not well-delineated; and 
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their largest assemblage is considerably smaller than 
reported here. The work of James is for the case of 
simple cubic assemblages and is still less extensive. 

For the homoatomic case, the Debye scattering 
function is 

I(0) = f2 X X  (sin r i i s ) / r i i s  . 

Because the function f2 differs for each different kind 
of atom~ and in any case is both monotonic and well- 
known, the purposes of our calculations are as well 
served by omitting it. Hereafter the term 'Debye 
scattering function' will mean 

I = XX (sin rijs)/sin riis. 

The conversion to actual scattering pattern will then 
have to include the well-known behavior of f f  as well 
as the effects of absorption, polarization and geometry 
of experimental set-up. 

The interatomic distances ri~- include every cell- 
corner.to-cell.corner distance, every cell-center-to-cell- 
center-distance, and every cell-center-to-cell-corner 
distance in the assemblage. Every such distance may 
be written as 9i~a where a is the unit cell edge and 
~fi] = (u2+v2+w~) ½, where u, v, w, are the orthogonal 
components of the analog of r,j in a lattice having a 
unit cell edge of unity. Placing s = at in the scattering 
function, we may now write 

I(t) = Z X  (sin Cf i~ t ) / q ) i i t .  

The effect of this transformation is simply to remove 
from I its explicit dependence on the absolute size 
of t h e  lattice. 

In a cube consisting of m a unit cells, there are 
ma+ (m + 1)a atoms and therefore [(m + 1)a+ ma]2 (pi/s not 
all of them distinct. Reordering the ~i/s over a single 
index, i, and noting that  any given ~i will occur in 
the assemblage A s times, we rewrite the Debye scatter- 
ing function finally in the form in which it was actually 
used: 

I(t) = Z A  i (sin ~ i t ) / q ) i t  . 

The evaluation of I(t) may conveniently be divided 
into two steps: (1) counting the frequency of occur- 
rence, Ai, of each ~i; and (2) numerical evaluation of 
the sum. The latter step may be reduced to a routine 
machine operation. 

For the purpose of counting these frequencies, it is 
convenient to distinguish three kinds of ~: (1) those 
both of whose end points lie in the simple cubic 'outer' 
lattice formed by the cell-corners; (2) those both of 
whose end points lie in the simple cubic 'inner' lattice 
formed by the cell-centers; and (3) those having one 
end in the outer and one end in the inner lattice. The 
outer lattice contains (m÷ 1)a points and the inner one 
m a points. The u, v, w associated with the first and 
second kinds of ~ are always integral; those associated 
with the third kind are half-odd integers. 

Consider a two-dimensional simple square lattice 
consisting of m cells in both directions. From the upper 
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left lattice point, draw a ~ having the horizontal 
component u and the vertical component v. This is 
the diagonal of a rectangle having dimensions u x v, 
and it is required to find how many such diagonals can 
be drawn in the array. Each rectangle has two diago- 
nals, and since the original double summation rec- 
ognizes rij as distinct from rii, each of these is counted 
twice. Thus each rectangle has four identical ~'s. 
Since there are m + l  lattice points in the horizontal 
direction, it is clear that  the rectangle can be repro- 
duced, by successive horizontal translations of one 
unit, (m+ 1 - u )  times. Each of these may be reproduced 
(m + 1 -v )  times vertically. The array therefore contains 
4(m+ 1 - u ) ( m +  1 , v )  repeated ~'s. In three dimensions, 
the total is 8 ( m + l - u ) ( m + l - v ) ( m + l - w ) .  

If, however, one of u, v, w becomes zero, then there 
are only half as many ~'s since a rectangle of zero 
width has only one, not two, 'diagonals'. If two of 
u, v, w are zero, the number is halved again; and if 
all three are zero, halved once more. Thus 

A i ~- 8g(m+ 1 - u ) ( m +  1 - v ) ( m +  l - w ) ,  

where the index i refers to one permutation of integers 
u, v, w; and g - -  1 when none of u, v, w is zero, ½ if 
one of them is zero, ¼ if two of them, and ~ if all three. 
The integers u, v, w may each range from 0 to m, 
and all distinct permutations of the three integers 
must be counted. 

Similar formulae for the ¢'s of the second and third 
kinds may be developed. For the inner lattice, 

A i = 8 g ( m - u ) ( m - v ) ( m - w ) ,  

where u, v, w take all integral values from 0 to m - 1 .  
For the mixed ~'s, 

Ai  = 1 6 ( m + ½ - u ) ( m + ½ - v ) ( m + ½ - w ) ,  

where u, v, w take all half-odd integral values from 
½ to m-½. There are a few cases, of course, where two 
different sets of integers, uvw and u'v'w' ,  have the 
same qDi = [u2+v~+w2] ½. In such cases the total Ai  
for that  ~i is the sum of the partial A/s,  not only for 
all permutations of u, v, w, but also for all permuta- 
tions of u', v', w'. A convenient check on the accuracy 
of the count is provided by the evident fact that  the 
sum of all the coefficients, Ai, must equal the square 
of the' number of atoms; that  is, 

•Ai= [ ( m + l ) 3 + m a ]  2 . 

Using the several sets of As so calculated for 
m = 1, 2, 3, 4, 5 and 10, the I)ebye scattering func- 
tion was computed in the range 3.0 < t < 37.0. This 
range corresponds roughly to typical experimental 
conditions. Thus for a unit cell edge of 5 J~, the 
maximum observable t at 180 ° diffraction angle with 
Cu K s  radiation is about 40. The computations were 
carried out on the International Business Machines' 
card-programmed electronic computer (CPC) using a 
wiring scheme designed specifically for this purpose. 
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Fig. 1. 

Z(~)~ was calculated at every 0.1 in t in order to assure 
correct detail for the larger values of m. 

Fig. 1 shows plots of these functions. All have been 
plotted to the same horizontal scale of t and to such a 
vertical scale as to make the height of the first peak 
the same in each plot. As the assemblage becomes 
larger, the gradual suppression of background, sharpen- 
ing and resolution of peaks, and appearance of new 
peaks at  high scattering angle are all evident. 

The lower horizontal scale shows those positions of 
t where, according to Bragg's law, a powder composed 
of indefinitely large crystals should show diffraction 
lines. These occur when ;t = 2dsin ½0; i.e. when 
t = 2~a/d; for the cubic case, when t = 2g(h'+]c2+/2) ½, 
h, k, 1 being integers. Thus, in accordance with the 
theorem of Gauss (see e.g., Dickson, 1939), a diffrac- 
tion line should show whenever (t/2g) 9 is integral, 
except for those integers of the form 4P(8q+7) where 
p and q are positive integers including zero. For the 
body-centered cubic case, however, all odd integers 
are also missing because of lattice extinctions. The 
smallest even integer of forbidden form is 28. The plot 
of the Debye scattering function for 1000 unit ceils 
shows very clearly a peak for every even integral value 
of (t/2~) ~ up to 34 with the single omission of 28. 

It appears, then, that a powder sample will show all 
possible lines in the Debye-Scherrer pat tern out to 

about t - - 3 7  if the crystallites are as large as 1000 
unit cell cubes; particles, say, 50 J~ in diameter. Even 
crystallites as small as about 60 unit ceils--say 20/~  
in diameter--show all the diffraction lines of macro- 
crystals out to about t = 25. The width of the peaks 
at  half-maximum is essentially constant for all peaks 
and is inversely proportional to m. This circumstance 
is in accord with the common formulae correlating 
line broadening with crystallite size. The pat terns of 
non-cubical assemblages of points arranged on this 
same body-centered cubic lattice is currently being 
investigated. 
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